On maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions

نویسندگان

  • Kurt Hornik
  • Bettina Grün
چکیده

Maximum likelihood estimation of the concentration parameter of von Mises-Fisher distributions involves inverting the ratio [Formula: see text] of modified Bessel functions and computational methods are required to invert these functions using approximative or iterative algorithms. In this paper we use Amos-type bounds for [Formula: see text] to deduce sharper bounds for the inverse function, determine the approximation error of these bounds, and use these to propose a new approximation for which the error tends to zero when the inverse of [Formula: see text] is evaluated at values tending to [Formula: see text] (from the left). We show that previously introduced rational bounds for [Formula: see text] which are invertible using quadratic equations cannot be used to improve these bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling

One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...

متن کامل

movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions

Finite mixtures of von Mises-Fisher distributions allow to apply model-based clustering methods to data which is of standardized length, i.e., all data points lie on the unit sphere. The R package movMF contains functionality to draw samples from finite mixtures of von Mises-Fisher distributions and to fit these models using the expectation-maximization algorithm for maximum likelihood estimati...

متن کامل

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

High-order parameter approximation for von Mises-Fisher distributions

This paper concerns the issue of the maximum-likelihood estimation (MLE) for the concentration parameters of the von Mises-Fisher (vMF) distributions, which are crucial to directional data analysis. In particular, we study the numerical approximation approach for solving the implicit nonlinear equation arising from building the MLE of the concentration parameter κ of vMF distributions. In addit...

متن کامل

A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of Is(x)

In high-dimensional directional statistics one of the most basic probability distributions is the von Mises-Fisher (vMF) distribution. Maximum likelihood estimation for the vMF distribution turns out to be surprisingly hard because of a difficult transcendental equation that needs to be solved for computing the concentration parameter κ . This paper is a followup to the recent paper of Tanabe e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2014